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The thermal sampling (t.s.) technique, a modification of thermally stimulated discharge (t.s.d.), has 
been applied to investigate molecular motions in poly(methyl methacrylate) and to compare the results 
with the theory of t.s. It was found that the distribution of relaxation times is represented by a 
distribution in activation energies and the temperature dependence of relaxation times is governed by 
the compensation law. A statistical test confirmed the validity of the compensation effect in the case 
of glass transition in PMMA. A theory based on self-diffusion has been applied to explain this effect 
and good agreement of the calculated expansion coefficient with the dilatometric data was obtained. 

INTRODUCTION THEORY 

Thermally stimulated discharge (t.s.d.) is currently widely 
used to investigate the dielectric properties of polymers 1-9. 
Recently a modification of this method, thermal sampling 
(t.s.), has been developed. Thermal sampling was originally 
proposed by Bucci 1° and was used to investigate the relaxa- 
tion processes in various polymers 3-9. Due to its high resolu- 
tion the technique is particularly suitable for analysis of 
complex and distributed relaxation processes. 

Dispersions in polymers can be described by the Debye 
model of relaxation if the distribution function is intro- 
duced. Such functions have been proposed to describe the 
results of dielectric measurements n. The distribution func- 
tion can be calculated directly from the shape of the t.s.d. 
peak1'2; one has to assume, however, which of the relaxation 
parameters (pre-exponential factor, s0, or activation energy, 
A) is distributed. 

Recent theoretical studies 12'13 show that thermal sampling 
makes it possible to describe in detail the distribution func- 
tion of the relaxation process and to show which of the 
parameters (s0 or A) is distributed. 

In the present work thermal sampling was applied to 
investigate the relaxation processes in poly(methyl metha- 
crylate), a model polymeric material for dielectric investiga- 
tions. The relaxation properties of this polymer have been 
extensively investigated by means of classical dielectric 
techniques T M  as well as by t.s.d) '2'Is'16. Several dispersion 
regions were found, labelled s,/3, '),, 6, in order of descending 
temperature n. They are ascribed to cooperative motions of 
the backbone chain (s  transition), rotation of the ester side 
group (/3 transition), methyl group rotation (7 transition) 
and ester methyl group motion (6 transition) 17. Some 
authors found another relaxation, s '  2,14,18, which is prob- 
ably due to the local mode relaxation, or represents the glass 
transition of the isotactic portion of the radically poly- 
merized material. 

The aim of this work was to obtain an insight into the 
detailed structure of the multiple relaxations by means of 
t.s. and to obtain some information about the possible 
nature of the distributions. 
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The theory of thermal sampling has been derived for the 
dipolar mechanism of polarization which dominates in polar 
homogeneous polymers. Generally, however, other mecha- 
nisms, such as build-up of a space charge or the Maxwell- 
Wagner polarization can take place as well, and the theory 
can be extended to include the other mechanisms. 

The t.s. experiment includes polarization of the sample at 
constant temperature, Tp, for a certain time, tp. This causes 
orientation of permanent dipoles and all molecular motions 
for which the relaxation time r(Tp) is of the order of tp or 
smaller, become oriented. In the next step the temperature 
is lowered to T d and the sample is partly depolarized in 
short circuit during a period of time, td. As a result, only a 
small fraction of the molecular motion processes, for which 
the relaxation times lie within a certain range, become 
frozen-in with permanent polarization. Finally the tempera- 
ture is lowered to T O and the sample is heated linearly, the 
current being recorded vs. temperature (this step is identical 
to the standard t.s.d, experiment). Variations of electric 
field, temperature and current during the t.s. experiment 
are schematically presented in Figure 1. 

In our previous work 12 we discussed the theoretically 
derived t.s. spectra for the possible cases of single, multiple 
and distributed Debye relaxation processes. Here we shall 
focus our attention on the most interesting case of a dis- 
tributed relaxation. The current density during the thermal 
sampling experiment is given by: 

/ = E e 0 ( e  s - e = )  x 

f s0a(T) ll - exp ( - s0x) lex  p ( - s o y )  f(u)du 

0 (1 )  

where E is the applied field, e 0 is the permittivity of vacuum, 
e s and e= are the static and high frequency dielectric con- 
stants, s 0 and a(T) are the natural frequency and the tem- 
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Figure 1 Scheme of electric field, temperature and current varia- 
tions wi th t ime during t.s. experiment. (a) E; (b) T; (c) j 

perature shift of  the relaxation frequency, ct = ct0a(T ). In the 
case of  the Arrhenius shift, a(T) = exp ( -A/kT) ,  where A is 
the activation energy and k is the Boltzmann constant. 

rp 

= a(rp)tp + s 1 t- a(T)dr (2) X 

ra 

and 

T 

y = a(Td)t d + s f a(T)dT 

To 

(3) 

s I is the reciprocal of the cooling rate after polarization; s is 
the reciprocal of  the heating rate and f(u) is the normalized 
distribution function fulfilling the condition: 

o o  

f f(u)du = 1 

0 

The distribution of  relaxation times can be represented 
either as a distribution in natural frequencies, c~0, or in 
activation energies, A. In the first case the formal parameter, 
u, in the distribution function f(u) will be replaced by a0, 
while in the second it will be replaced by A. 

In the t.s. experiment the temperature window, AT = 
Tp - Td, is small, usually in the range of  5K, while in t.s.d. 
it is chosen as wide as to cover the whole relaxation process. 
The t.s.d, spectrum of  a distributed Debye process is much 

broader than that of a single process, and the t.s. spectrum 
approaches the peak due to the single Debye process ~2. This 
makes it possible to utilize the simple method of  calculat- 
ing the activation parameters of  the process, i.e. the Bucci 
plot m, where log ct(T) is plotted vs. 1/T and 

a(T) = j j(t)dt (4) 

Introducing some specific distribution functions (e.g. 
Cole-Cole or Fuoss-Kirkwood functions) we have per- 
formed model calculations on the t.s. spectra ~2,B. It was 
found that the results were different for the distribution in 
ct 0 and in A. In the former case the value o f  ct 0 calculated 
from single t.s. peaks varied significantly with polarization 
temperature, while in the latter case they remained almost 
constant. The reverse applied to the distribution in activa- 
tion energies. These results led us to the conclusion that the 
t.s. technique makes it possible to distinguish whether there 
is a distribution in ¢x 0, in A or in both. 

EXPERIMENTAL 

Films of  poly(methyl methacrylate), ~36/am thick, were 
cast from 3% solution in chloroform, and then vacuum dried 
to remove the residue of  the solvent. The samples were 
supplied with vacuum evaporated gold electrodes (area, 
1.5 cm2). 

The t.s. experiments were performed in a vacuum of  ~5 x 
10 -5  torr; the heating and cooling parameters were s = 
6.7 sec/K and s 1 = 0.6 sec/K. The polarization field was 
E = 1.3 x 107 V/m, the polarization and depolarization 
times were tp = td = 180 sec and the temperature window 
AT = 5 K. The polarization temperature was scanned 
every 10K from liquid nitrogen temperature to 360K. 

RESULTS 

The set of  current maxima obtained in a series of  t.s. experi- 
ments is shown in Figure 2a. The envelope of  the curves 
exhibits the typical features of the t.s.d, spectrum of  PMMA, 
i.e. a broad/3 maximum at about 240K and an increase in 
peak amplitudes tending to the ct maximum at about 370K. 
The temperatures of  the t.s. maxima, T m, increase linearly 
with increasing polarization temperatures, Tp, (Figure 2b), 
and the slope is close to unity, which is in good agreement 
with theoretical predictions 1~ for the flat continuous 
distribution. 

Each t.s. maximum was analysed numerically to obtain 
the Bucci plot of  log t~(T) vs. 1 IT. The plots were linear at 
least up to the halfwidth temperature and for higher tem- 
peratures they deviated towards lower values o f  ct, which 
was to be expected for the distributed relaxation 1. The 
values of  ¢x 0 and A were deduced from the linear portion of  
the plots, and the dielectric strength, Ae = es -- e**, was cal- 
culated from the total charge released in a t.s. experiment: 

o o  

1 . f  j( t)dt Aet.s. - _ EE 0 

to 

(5) 
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Figure 2 (a) Series of thermal sampling maxima in PMMA. The 
temperature window ~ T  = 5K, the polarization temperature Tp is 
scanned every 10K. (b) Temperatures of the maxima plotted vs. 
polarization temperatures. A, (T m = Tp) 
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Figure 3 Values of ACts . plotted vs. polarization temperature for 
a series of t.s. experiments 

The plot of Aet.s. vs. polarization temperatures is presented 
in Figure 3. 

The values of the parameters ao, A and Ae obtained can 
be attributed to distinct 'portions' of the relaxation pro- 
cess. It is by no means claimed that they represent any dis- 
crete or physically distinguishable relaxations, but they are 
only samples of the distributed relaxation. Nevertheless, 
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they can give comprehensive information about the relaxa- 
tion process, giving the local values of relaxation times, 
their temperature dependence and relative contribution to 
the total process (Aet.~). They can easily be converted into 
the classical plots of e' and e" versus frequency or tempera- 
ture 4'%n (which is rather difficult in the case of a standard 
t.s.d, experiment~), thus permitting direct comparison with 
the dielectric data. Such a conversion, calculated for a 
series of experiments covering the/~ relaxation region is pre- 
sented in Figure 4. The plots of e" vs. frequency (T = 
constant) and vs. temperature (60 = constant) are very 
similar to those obtained in dielectric measurements, exhibit- 
ing a shift of the maximum with temperature and frequency. 
For lower temperatures or lower frequencies, respectively, 
the plots are found to be resolved into two maxima. This 
remains in agreement with the Aet.s. plot which also shows 
an additional maximum between a and/3 processes. This 
maximum is ascribed to the a '  process 2. Thus the e" p!ots 
apparently show the maxima corresponding to/~ and a 
which have been resolved by means of thermal sampling. 

The temperature dependence of the relaxation para- 
meters a 0 and A derived from t.s. experiments is presented 
in Figure 5. Both plots are similar consisting of steps and 
sloping portions of the line. The plot of activation energy 
is close to that obtained by the partial heating technique ~s'~9 
where the flat parts of the plot represent the activation 
energies of the relaxation processes. According to the 
theory of t.s.12 the sloping portions of the plot are inter- 
preted as representing the distribution. The distribution of 
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Figure 4 Plots of the imaginary part of complex dielectric constant 
calculated according to ref 12 from the t.s. data for the ~ and ~' 
relaxation region (Tp in the range 180 to 310K): (a) e" versus log 
frequency with temperature as a parameter: A, 225K; B, 250K; 
C, 275K; D, 300K; E, 375K; F, 350K; (b) e" versus temperature, 
frequency as a parameter, o~ values: A, 0.0001 ; B, 0.001 ; C, 0.01 ; 
D, 0.1; E, 1; F, 10; G, 100 
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Figure 5 Activation energies, A, and natural frequencies s 0 derived 
f rom t.s. p e a k s  p l o t t e d  vs. T o 
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Figure 6 The p lot  of  activation parameters log s 0 and AS % versus 
A or ~ H  % for a series of  t.s. experiments 

natural frequencies cannot be the case here, however. The 
s 0 factor calculated from the t.s. peaks should be a decreas. 
ing function of  polarization temperature n,  where a distri- 
bution in natural frequencies is concerned. In our case, 
however, both activation energy and natural frequency are 
increasing functions of  the polarization temperature in the 
same temperature ranges. 

To elucidate t[ais point the logarithm of s 0 was plotted 
against A (Figure 6). The plot shows proportionality 
between log s 0 and A, and consists of  two branches with 
different slopes. Such behaviour is well known in kinetic 
measurements and is called the isokinetic relationship or the 
compensation law; it is observed in chemical kinetic analy- 
sis 2u-n, in electrical conductivity measurements 23,24 as well 
as in relaxation phenomena 2s-27. In the case of  solid poly- 
mers this effect is observed only if data for different mate- 
rials are compared, and by means of  thermal sampling this 
effect can be observed in one polymer 3'5 thus making it 
possible to eliminate the inevitable source of  errors due to 
differences in composition, structure and preparation of  dif- 
ferent samples. 

The two segments of  the plot in Figure 6 represent two 

temperature ranges corresponding to the ~ relaxation and 
the s relaxation regions. Expressing the compensation 
relationship as: 

In s 0 = In/~0 + WA (6) 

we can calculate the parameters 130 and W for both relaxa- 
tions. The mean values of  these parameters are/30 = 0.05 Hz 
and W = 37.9 (eV) -1 for the 13 relaxation, and 130 = 1 Hz and 
W = 31.3 (eV) -1 for the s relaxation. 

DISCUSSION 

Interpretation of  the distribution 
The concept of  distribution of  relaxation times or fre- 

quencies is widely employed in mechanical and dielectric 
measurements to explain the deviations from the Debye 
model of  relaxation H. Assuming the Arrhenius-like tem- 
perature dependence of relaxation times, the distribution 
can be treated either as a distribution in natural frequencies 
or as a distribution in activation energies ~. Schematic repre- 
sentation of both extreme cases is presented in Figure 7a 
and 7b, where the line segments represent the temperature 
dependences of  several subrelaxations chosen from the con- 
tinuous distribution. They are parallel in the case of  the dis- 
tribution in a 0, and intersect at one point at l IT  = 0 in the 
case of the distribution in A. In the experimental case, 
however, where the compensation law is fulfilled, the lines 
have different slopes but intersect at a point whose co- 
ordinates are/30 and l iT  0 . We may thus say that we are 
dealing with the distribution in activation energies only, 
and not the Arrhenius law a = a o e x p ( - A / k T  ) but the com- 
pensation law: 

;0)1 s =/30 exp - 

where T 0, the isokinetic temperature, governs the tempera- 
ture dependence of the relaxation frequency, s. 

The chief argument against the concept of the distribu- 
tion of relaxation times 28 was that in many cases the re- 
quired distribution spanned a range of  as many as 6 to 10 
decades of frequency, which could hardly have a physical 
meaning. However, the activation energy range necessary to 
cover such a range of  relaxation times is much smaller and 
can be reasonably explained. 

The Debye model was originally defined for a set of  non- 
interacting dipoles which are free to rotate except for a 

¢J 
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Figure 7 Schematic representation of  distr ibutions: (a) in natural 
frequencies; (b) in activation energies and (c) experimental distribu- 
t ion. The line segments represent the subrelaxations chosen f rom a 
cont inuous distr ibut ion 
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frictional torque opposing their motion. Microscopically 
this friction is due to the conformational barrier of  a rotat- 
ing molecule. If  there are no interactions, all the barriers 
have the same height and we are dealing with a single, 
Debye-like relaxation. In a solid polymer, however, one 
may expect interactions with the neighbouring polymer seg- 
ments, and these interactions lower or raise the conforma- 
tional barrier. Due to the more or less random packing of  
chains in an amorphous polymer we have a case of  a dis- 
tribution of the barriers hindering the rotation of  a polymer 
segment, thus yielding a macroscopic distribution in activa- 
tion energies. 

Compensation effect 
In order to interpret the compensation law we shall refer 

to the Eyring theory representing the temperature depen- 
dence of the relaxation frequency: 

a = -  exp - 
h kT I 

where h is Pianck's constant,/kG* is the Gibbs free energy 
of activation: 

AG* = &/-/* - T/kS* 

and &/-/* and AS* are the activation enthalpy and entropy. 
The compensation law can be then represented as the linear 
AS* -- zSJ/* relationship (Figure 6). 

Most of the criticism directed against the physical signifi- 
cance of  the compensation law 2°'29'3° arises from the fact 
that there exists a large covariance between the AS* and 
z3J/* values and the propagation of  experimental errors itself 
produces a linear AS* - &H* relationship. It has been 
shown 3° that in the case of  purely statistical compensation 
dependence one obtains a line with the slope T O = Thin, 
where Thm is the harmonic mean o f  the measurement tem- 
peratures Ti: 

Thm = n - -  (9) r; 

and n is the number of  experiments. 
On the basis of  this finding a 'test for the hypothesis'  has 

been devised 3°. It makes it possible to eliminate the cases 
where the hypothesis that the observed compensation law 
is only a consequence of  the propagation o f  experimental 
errors cannot be rejected at a given level of  significance. To 
test this hypothesis, the experimental slope TO is compared 
with Thin 

: ~ ( a / - / *  - ~ ' * )  ( a S *  - a S * )  

TO- £(&S* - 9 * )  2 (10) 

where the bar denotes the mean value, e.g. 9 '  is the mean 
of  observed values of  &S*. An approximate r x 100% confi- 
dence interval for T O is: 

[T o + tr(V)l/2 , T O - tr(V)l/2 ] 

where 

[ , " ,C* (To)  - E C * ( T h , , , ) ] 2  
V= (11) 

( n -  2)2;(&S* ~ * ) 2  
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and t r is the statistical dispersion limit for r, the confidence 
interval. 

The test has been applied independently to the high tem- 
perature (a  relaxation), and low temperature (/3 relaxation) 
parts of  the experimental data, representing two branches in 
Figure 6. The 95% confidence intervals of  T O are compared 
with Thm in Table 1. For the/~ relaxation the harmonic 
mean of  experimental temperatures is included in the 95% 
confidence interval of  TO, thus the null hypothesis TO = 
Thin cannot be rejected at the 5% level of  significance. How- 
ever, for the a relaxation the reverse is true and we may 
expect a real extrathermodynamic compensation relation- 
ship, and not only the propagation of  experimental errors. 
An additional argument confirming this statement is the 
linearity of  the plot/kH* - AG#(Thm ) found for this data 
set, which is expected only for the true compensation 
effect 31. 

Interpretation of/kH* - AS* relationship 
A theory explaining the linear relations between the two 

constants M-/* and fS* ,  has been developed for self-diffusion 
processes in inorganic solids 32,aa and it has been applied to 
the relaxations in various polymers 26. Recently the theory 
has been modified 34 to allow direct application to polymeric 
solids, yielding the relationship: 

1 
AH* - kS* + kI~ttor (12) 

9~kate 

where ate is the isobaric coefficient of thermal expansion; 
/kate represents the difference in ate between the rubbery 
and glassy state (for the a relaxation) and M~tor corres- 
ponds to the internal torsional energy of a polymer chain. 
This equation was found to fit our data for the a relaxation 
in PMMA, which, in accordance with previous discussion, 
exhibited the real compensation effect. Values of  the para- 
meters obtained w e r e / k a t e  = 3.0 x 10 -4  K -1 and zXH*tor = 

0.97 eV. The values of  thermal expansion coefficients cal- 
culated from dilatometric data for PMMA 14 are: for the 
rubbery state, ate = 5.95 x 10 -4  K - l ;  and for the glassy 
state, ate = 2.79 x 10 -4  K -1.  The difference is thus/kate = 
3.16 x 10 -4  K -1, and is in good agreement with the value 
of  this parameter obtained from t.s. experiments. We may 
conclude that the theory dealing with the self-diffusion 
processes is valid for the glass transition in PMMA and the 
application of  the compensation equation to describe the 
data is well justified here. 

CONCLUSIONS 

Thermal sampling was applied to investigate the relaxation 
processes in poly(methyl methacrylate). It was shown that 
the dispersions in this polymer are continuously distributed. 

Table 2 Comparison of statistical and experimental compensation 
temperatures for e and/] relaxations in PMMA 

95% Confi- 
Thin T O dence interval 

Relaxation (K) (K) for T O (K) 

(x 312 370 327/412 
210 306 21/591 
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Activation energy is the parameter which undergoes a dis- 
tribution, and it is not the Arrhenius law but the compensa- 
tion law that governs the temperature dependence of relaxa- 
tion times. A statistical test showed that in the case of the 
ct relaxation the observed compensation cannot merely be a 
result of propagation of experimental errors and a true 
extrathermodynamic effect was detected. Application of 
the theory developed for self-diffusion processes gave a good 
agreement of the obtained expansion coefficient with the 
dilatometric one, thus confirming the validity of the com- 
pensation law. 
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